60=-16t^2+5t+105

Simple and best practice solution for 60=-16t^2+5t+105 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60=-16t^2+5t+105 equation:


Simplifying
60 = -16t2 + 5t + 105

Reorder the terms:
60 = 105 + 5t + -16t2

Solving
60 = 105 + 5t + -16t2

Solving for variable 't'.

Combine like terms: 60 + -105 = -45
-45 + -5t + 16t2 = 105 + 5t + -16t2 + -105 + -5t + 16t2

Reorder the terms:
-45 + -5t + 16t2 = 105 + -105 + 5t + -5t + -16t2 + 16t2

Combine like terms: 105 + -105 = 0
-45 + -5t + 16t2 = 0 + 5t + -5t + -16t2 + 16t2
-45 + -5t + 16t2 = 5t + -5t + -16t2 + 16t2

Combine like terms: 5t + -5t = 0
-45 + -5t + 16t2 = 0 + -16t2 + 16t2
-45 + -5t + 16t2 = -16t2 + 16t2

Combine like terms: -16t2 + 16t2 = 0
-45 + -5t + 16t2 = 0

Begin completing the square.  Divide all terms by
16 the coefficient of the squared term: 

Divide each side by '16'.
-2.8125 + -0.3125t + t2 = 0

Move the constant term to the right:

Add '2.8125' to each side of the equation.
-2.8125 + -0.3125t + 2.8125 + t2 = 0 + 2.8125

Reorder the terms:
-2.8125 + 2.8125 + -0.3125t + t2 = 0 + 2.8125

Combine like terms: -2.8125 + 2.8125 = 0.0000
0.0000 + -0.3125t + t2 = 0 + 2.8125
-0.3125t + t2 = 0 + 2.8125

Combine like terms: 0 + 2.8125 = 2.8125
-0.3125t + t2 = 2.8125

The t term is -0.3125t.  Take half its coefficient (-0.15625).
Square it (0.0244140625) and add it to both sides.

Add '0.0244140625' to each side of the equation.
-0.3125t + 0.0244140625 + t2 = 2.8125 + 0.0244140625

Reorder the terms:
0.0244140625 + -0.3125t + t2 = 2.8125 + 0.0244140625

Combine like terms: 2.8125 + 0.0244140625 = 2.8369140625
0.0244140625 + -0.3125t + t2 = 2.8369140625

Factor a perfect square on the left side:
(t + -0.15625)(t + -0.15625) = 2.8369140625

Calculate the square root of the right side: 1.684314122

Break this problem into two subproblems by setting 
(t + -0.15625) equal to 1.684314122 and -1.684314122.

Subproblem 1

t + -0.15625 = 1.684314122 Simplifying t + -0.15625 = 1.684314122 Reorder the terms: -0.15625 + t = 1.684314122 Solving -0.15625 + t = 1.684314122 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.15625' to each side of the equation. -0.15625 + 0.15625 + t = 1.684314122 + 0.15625 Combine like terms: -0.15625 + 0.15625 = 0.00000 0.00000 + t = 1.684314122 + 0.15625 t = 1.684314122 + 0.15625 Combine like terms: 1.684314122 + 0.15625 = 1.840564122 t = 1.840564122 Simplifying t = 1.840564122

Subproblem 2

t + -0.15625 = -1.684314122 Simplifying t + -0.15625 = -1.684314122 Reorder the terms: -0.15625 + t = -1.684314122 Solving -0.15625 + t = -1.684314122 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.15625' to each side of the equation. -0.15625 + 0.15625 + t = -1.684314122 + 0.15625 Combine like terms: -0.15625 + 0.15625 = 0.00000 0.00000 + t = -1.684314122 + 0.15625 t = -1.684314122 + 0.15625 Combine like terms: -1.684314122 + 0.15625 = -1.528064122 t = -1.528064122 Simplifying t = -1.528064122

Solution

The solution to the problem is based on the solutions from the subproblems. t = {1.840564122, -1.528064122}

See similar equations:

| 32/(2/5) | | 4/3(3.14)(x)^3=9203 | | 6+7h+(-6)-3h= | | 2(5m-4n)-(3m-7n)= | | lnx-7[ln(x-4)+ln(x+4)]=0 | | 5(h+2)=12h | | 200-1.5=180-0.5x | | 8d(2d+5)=-16 | | 4nq+6q+2qn= | | 2(4x+10)=8x+1k | | 6x+5=2(3x+3)-1 | | 7x-14=10x+17 | | 16*19= | | 14x+27=0 | | 11*18= | | f-6/5=3.6 | | 27/9/5-1 | | 2a+3x+6x= | | 7h+6h= | | 2x+15=36x^2 | | 12v/5=-3 | | 3x^2-61=0 | | 7v-25=-2(v+8) | | -6(x+9)=-8x-36 | | 25n-3y10/35x5y2 | | -3v+20=8(v-3) | | 7x*x^2=6 | | -0+3x=4 | | 8x^2+4x+4=3 | | 3+2+1=x+1 | | ax^2+8x+(a-3)=0 | | 364=28k |

Equations solver categories